Forklift Control Valves

Control Valve for Forklift - The first mechanized control systems were being utilized over two thousand years ago. In Alexandria Egypt, the ancient Ktesibios water clock built in the third century is believed to be the very first feedback control device on record. This clock kept time by regulating the water level in a vessel and the water flow from the vessel. A common design, this successful equipment was being made in the same way in Baghdad when the Mongols captured the city in 1258 A.D.

Different automatic devices all through history, have been used to accomplish certain tasks. A popular desing utilized during the 17th and 18th centuries in Europe, was the automata. This particular tool was an example of "open-loop" control, featuring dancing figures which will repeat the same job repeatedly.

Closed loop or likewise called feedback controlled devices include the temperature regulator common on furnaces. This was developed in the year 1620 and accredited to Drebbel. One more example is the centrifugal fly ball governor developed in 1788 by James Watt and used for regulating the speed of steam engines.

The Maxwell electromagnetic field equations, discovered by J.C. Maxwell wrote a paper in the year 1868 "On Governors," that was able to describing the exhibited by the fly ball governor. So as to explain the control system, he utilized differential equations. This paper exhibited the usefulness and importance of mathematical models and methods in relation to comprehending complex phenomena. It even signaled the beginning of systems theory and mathematical control. Previous elements of control theory had appeared before by not as dramatically and as convincingly as in Maxwell's study.

In the next one hundred years control theory made huge strides. New developments in mathematical techniques made it feasible to more accurately control significantly more dynamic systems than the original fly ball governor. These updated methods consist of different developments in optimal control in the 1950s and 1960s, followed by advancement in robust, stochastic, adaptive and optimal control techniques during the 1970s and the 1980s.

New applications and technology of control methodology have helped make cleaner auto engines, cleaner and more efficient chemical methods and have helped make communication and space travel satellites possible.

At first, control engineering was performed as just a part of mechanical engineering. Control theories were initially studied with electrical engineering for the reason that electrical circuits can simply be described with control theory techniques. At present, control engineering has emerged as a unique discipline.

The very first controls had current outputs represented with a voltage control input. To be able to implement electrical control systems, the right technology was unavailable at that time, the designers were left with less efficient systems and the option of slow responding mechanical systems. The governor is a really efficient mechanical controller that is still normally utilized by some hydro factories. Ultimately, process control systems became obtainable previous to modern power electronics. These process controls systems were normally used in industrial applications and were devised by mechanical engineers making use of hydraulic and pneumatic control devices, lots of which are still being used at present.