Forklift Alternators and Starters

Forklift Starters and Alternators - The starter motor of today is typically either a series-parallel wound direct current electric motor that includes a starter solenoid, which is similar to a relay mounted on it, or it can be a permanent-magnet composition. Once current from the starting battery is applied to the solenoid, basically via a key-operated switch, the solenoid engages a lever that pushes out the drive pinion that is positioned on the driveshaft and meshes the pinion with the starter ring gear that is found on the engine flywheel.

When the starter motor starts to turn, the solenoid closes the high-current contacts. Once the engine has started, the solenoid has a key operated switch which opens the spring assembly to be able to pull the pinion gear away from the ring gear. This action causes the starter motor to stop. The starter's pinion is clutched to its driveshaft by means of an overrunning clutch. This allows the pinion to transmit drive in just one direction. Drive is transmitted in this method through the pinion to the flywheel ring gear. The pinion remains engaged, for instance since the driver did not release the key once the engine starts or if there is a short and the solenoid remains engaged. This causes the pinion to spin independently of its driveshaft.

This aforesaid action prevents the engine from driving the starter. This is an essential step as this kind of back drive will enable the starter to spin so fast that it would fly apart. Unless modifications were made, the sprag clutch arrangement will preclude making use of the starter as a generator if it was used in the hybrid scheme mentioned prior. Normally a standard starter motor is designed for intermittent use which would stop it being utilized as a generator.

The electrical components are made to be able to operate for roughly thirty seconds to be able to stop overheating. Overheating is caused by a slow dissipation of heat is due to ohmic losses. The electrical parts are meant to save cost and weight. This is really the reason most owner's instruction manuals utilized for automobiles recommend the driver to stop for at least ten seconds after every 10 or 15 seconds of cranking the engine, if trying to start an engine which does not turn over instantly.

In the early 1960s, this overrunning-clutch pinion arrangement was phased onto the market. Before that time, a Bendix drive was used. The Bendix system operates by placing the starter drive pinion on a helically cut driveshaft. As soon as the starter motor begins turning, the inertia of the drive pinion assembly allows it to ride forward on the helix, thus engaging with the ring gear. Once the engine starts, the backdrive caused from the ring gear allows the pinion to go beyond the rotating speed of the starter. At this instant, the drive pinion is forced back down the helical shaft and hence out of mesh with the ring gear.

In the 1930s, an intermediate development between the Bendix drive was developed. The overrunning-clutch design which was made and introduced during the 1960s was the Bendix Folo-Thru drive. The Folo-Thru drive has a latching mechanism together with a set of flyweights within the body of the drive unit. This was a lot better as the average Bendix drive used so as to disengage from the ring once the engine fired, although it did not stay running.

The drive unit if force forward by inertia on the helical shaft as soon as the starter motor is engaged and begins turning. Afterward the starter motor becomes latched into the engaged position. Once the drive unit is spun at a speed higher than what is achieved by the starter motor itself, like for example it is backdriven by the running engine, and after that the flyweights pull outward in a radial manner. This releases the latch and enables the overdriven drive unit to become spun out of engagement, therefore unwanted starter disengagement can be prevented prior to a successful engine start.